LIF KISALMASI, YALIN YÖNETIM VE RAM:GERI DÖNÜŞÜMLÜ KÂĞITTAN SÜREÇ GÜVENILIRLIĞINE

Geri dönüşümlü kâğıtlarda, tekrarlanan kullanım döngüleri selüloz liflerinin kısalmasına ve mukavemetin düşmesine yol açar. Bu fiziksel olgu, yalın yönetimde “aynı çözümü” defalarca uyguladıkça elde edilen kazanımların azalması ve yüzeysel (kısa ömürlü) çözümlerin çoğalmasıyla benzeşir. Bu makale, Tınaz Titiz’in “kısa/uzun lifli akıl” metaforunu, Alp Esin’in güvenilirlik–güvenilebilirlik (RAM) çerçevesiyle birleştirerek; imalat, otomotiv, havacılık ve savunma gibi emniyet-kritik sektörlerde problem çözmenin nasıl “uzun lifli” bir mühendislik disiplinine dönüştürülebileceğini somut bir yol haritasıyla ortaya koyar.


1) Giriş

Kâğıt geri dönüşümünde lifler her çevrimde bir miktar kısalır; bir eşiğin ardından elde edilen hamur, yüksek dayanım gerektiren uygulamalarda yapısal bütünlüğü taşımakta zorlanır. Endüstri pratiği, bu noktada sisteme “bakir (uzun) lif” eklenmesini bir gereklilik olarak görür. Aynı dinamiği, işletmelerin süreç iyileştirme serüveninde de gözlemleriz: Başlangıçtaki büyük kazanımlar bir süre sonra küçülür, iyileştirme “platoya” oturur. Platoyu aşmanın yolu, döngüye taze lif—yeni bilgi, yeni teknoloji, yeni bakış—eklemektir. Yalın yönetim, bu tazelenmeyi sistematik kılan bir düşünme ve pratik setidir.


2) Lif Kısalması ve Malzeme Gerçekliği

Selüloz lifleri geri dönüşüm döngüleri boyunca kısalır; lif–lif bağları zayıfladıkça kâğıdın çekme/katlanma dayanımı ve yüzey özellikleri geriler. Bu nedenle işlev–koşul–ömür gereksinimi yüksek olan kâğıt türlerinde uzun lif girdisi kritik önemdedir. Aynı ilkeyi süreç mühendisliğine uyarladığımızda, bir organizasyonun aynı müdahale kalıbını tekrarladıkça “etkili lif uzunluğunun kısaldığını”, yani müdahalenin taşıma gücünün azaldığını söyleyebiliriz. Bu, “kısa ömürlü çözümlerle idare etme” davranışını besler.


3) Tınaz Titiz’in Metaforu: Kısa/Uzun Lifli Akıl

Tınaz Titiz’in dikkat çektiği gibi; lif uzunluğu, bir sorunu çözmek için seferber edilen aklın derinliği ile benzeştirilebilir. Günlük pratik, “kısa lifli” ezberlerle (alışkanlık çözümleri) çok şeyi idare edebilir. Ancak karmaşıklık arttığında, kısa lifli yaklaşımlar yükü taşıyamaz. Kök neden analizi, deneyle doğrulama, hipotez kurma ve standartlaştırma gibi uzun lifli düşünme araçları devreye girmediği sürece, sorunlar semptom değiştirerek yeniden belirir. Böylece organizasyon, görünürde hareketli; gerçekte yerinde sayan bir döngüye hapsolur.


4) Yalın Bağlantı: Jidoka, 5 Neden, Değer Akışına Bütünsel Bakış

Yalın yaklaşımda hedef, “bir daha yaşanmaması” için kalıcı tedbirdir.

  • Jidoka: Erken uyarı → durdur → nedenini gör → kalıcı önlem. Bu refleks, “lif kısalmasını hızlandıran görünmez kusurları” (drift, parametre kayması, geçici yamalar) erken evrede yakalar.
  • 5 Neden & Balık Kılçığı: Belirtiyi değil, neden ağını hedefler.
  • A3 düşüncesi: Problemi işlev–koşul–süre netliğiyle tanımlar; mevcut durumu veriye dayalı çizer; kök neden, karşı önlem, doğrulama ve standart iş bağlantısını kapatır.
  • Değer Akış Haritalama: Akıştaki bekleme, yeniden işleme, taşıma ve bilgi gecikmelerini görünür kılar; sistemin “gerçek darboğazını” keşfetmeye yarar.

5) Alp Esin’den Güvenilirlik–Güvenilebilirlik ve RAM Çerçevesi

Alp Esin, güvenilirliği “belirlenmiş işlevi, belirlenmiş koşullarda, belirlenmiş süre boyunca yerine getirme yetisi” olarak tanımlar ve “belirlenmiş” sözcüğünün altını çizer. Tanım, yalın problem çözmede “Problem Tanımı” ve “Hedef Koşul” bölümlerine mühendislik netliği kazandırır.

Güvenilebilirlik (Dependability) ise pratikte RAM üçlüsüyle okunur:

  • Reliability (R): Arızasız çalışma olasılığı (MTBF, FPY, alan arıza oranı).
  • Availability (A): Gerek duyulduğunda devrede olma (OEE, planlı/plansız duruşlar).
  • Maintainability (M): Arızadan sonra hızla ve tutarlı biçimde devreye alınabilme (MTTR, erişilebilirlik, yedek parça lojistiği).

Karmaşıklık arttıkça, bileşen sayısının büyümesine paralel toplam kusur olasılığı bileşik biçimde artar. Bu gerçeklik; havacılık ve savunmada RAMS yaklaşımını, otomotivde saha FRACAS–A3–FMEA kapalı çevrimlerini, kalite tarafında ise Altı Sigma disiplinini rasyonel kılar. Emniyet-kritik örneklerde (ör. 2024 başındaki MAX 9 “door plug” olayı) kök neden bulunmadan hattı açmamak, yalın’ın Jidoka ilkesiyle birebir örtüşür.


6) Uygulama Rehberi: RAM × Yalın Problem Çözme × “Taze Lif”

(1) A3’ü RAM ile zenginleştirin.

  • Problem Tanımı: İşlev–koşul–süre açık ve ölçülebilir yazılsın (örn. “-40…+85 °C’de 10.000 çevrim sızdırmazlık ≥ X”).
  • Mevcut Durum: R/A/M ve OEE–MTBF–MTTR tablolaştırılsın.
  • Kök Neden: Ishikawa’da “lif kısaltıcı” etmenler (insan, makine, metot, malzeme, ölçüm, çevre) net ayrıştırılsın.
  • Karşı Önlem: Her aksiyonun R/A/M etkisi belirtilsin (R↑, A↑, M↑).
  • Kontrol: RAM hedeflerine yönelik izleme aralığı (gün/hafta/ay) ve standardizasyon (talimat, eğitim, Poka-Yoke, bakım planı) tanımlansın.

(2) “Lif kısalması” için erken uyarı sinyalleri belirleyin.

  • Üretim: Parametre drift’i, aynı arıza kodlarının yinelenmesi, “quick fix” artışı.
  • Kalite: Aynı kök nedene bağlanan uygunsuzluklar, yeniden işleme trendi.
  • Saha/Servis: Aynı parça–aynı batch garanti iadelerinin kümelenmesi (FRACAS).

(3) Hızlı kontrol listesi (otomotiv/havacılık/savunma)

  • İşlev–koşul–ömür tanımı belirgin mi?
  • Tasarım marjı ve emniyet payı yeterli mi?
  • Maintainability: Erişilebilirlik, sök-tak süresi, yedek parça tedarik çevrimi nasıl?
  • Availability: Yedekli mimari, planlı bakım etkisi ne?
  • Öğrenme döngüsü kapalı mı: A3 ↔ FRACAS ↔ FMEA güncel mi?

(4) KPI eşlemesi

  • R: FPY, alan arıza oranı, garanti iade, MTBF.
  • A: OEE, uptime, planlı/plansız duruş.
  • M: MTTR, bakım standardizasyon skoru, yedek parça lead-time.

(5) “Taze lif” aksiyonları

  • Tasarım: Dayanım/ömür gereksinimlerine göre Design for Reliability & Maintainability.
  • Süreç: Kritik parametreler için SPC & gözle görülür görselleştirme, sınır taşırma alarmı.
  • Teknoloji: PdM (titreşim/ısı/nem izleme), dijital FRACAS, kök neden veritabanı.
  • Tedarik: Malzeme spesifikasyonlarının sıkılaştırılması, lot takibi, giriş kontrol planı.
  • İnsan: Yetkinlik matrisi, standart iş, Jidoka refleksi, A3 eğitimleri.

7) Sektörel Uygulama Örnekleri

Otomotiv (tekrarlayan hat duruşu):
Kısa lifli yaklaşım: Arızayı hızla gider, üretimi çalıştır, “sonra bakarız”.
Uzun lifli yaklaşım: Durdur–gör; 5 Neden → hizalama/titreşim kaynaklı kökü doğrula; temelleri güçlendir, bakım aralığını ve talimatı güncelle; MTBF uzat, MTTR kısalt.

Havacılık & Savunma (emniyet-kritik kalite sapması):
Kısa lifli yaklaşım: Hatalı parçayı hurdaya ayır, üretime devam.
Uzun lifli yaklaşım: 8D/A3 ile tedarik–üretim parametrelerini birlikte incele; örn. nem oranı dalgalanması kökünü bul; çevresel kontrol ve tedarikçi süreçlerini sertleştir; RAMS doğrulaması yap.

Satış/Servis (kısa ömürlü kampanya döngüsü):
Kısa lifli yaklaşım: Sürekli indirim–kampanya; kısa vadede hacim, uzun vadede marka erozyonu.
Uzun lifli yaklaşım: Ürün/deneyim inovasyonu, kanal çeşitlendirme, veri temelli değer önerisi; satış istikrarı ve sürdürülebilir büyüme.


8) Ölçüm Seti ve Görselleştirme

  • Reliability (R): FPY, alan arıza oranı (ppm), garanti iade oranı, MTBF.
  • Availability (A): OEE (TEA), planlı/plansız duruş dağılımı, uptime.
  • Maintainability (M): MTTR, bakım erişilebilirliği/standart iş skoru, yedek parça tedarik çevrimi.
  • Entegrasyon: A3 kontrol planında RAM hedefleri, FRACAS kapanış süreleri, FMEA güncelleme tarihi ve RPN eğrisi.

9) Sonuç

Lif kısalması, ister kâğıt üretimi ister fabrika süreçleri olsun, bize aynı dersleri fısıldar: Aynı çözüm tekrarlandıkça etkisi kısalır. Kalıcı ilerlemenin yolu, döngüye taze lif—yeni bilgi, yeni teknoloji, yeni çalışma biçimleri—eklemektir. Yalın yönetim, Jidoka–A3–FMEA üçgeniyle bu tazelenmeyi sistematikleştirir; RAM metrikleri ise iyileştirmenin sahici olup olmadığını gösterecek objektif pusuladır. İmalat, otomotiv, havacılık ve savunma gibi emniyet-kritik alanlarda kısa lifli (yüzeysel) çözümler sadece günü kurtarır; uzun lifli (kök neden ve doğrulama odaklı) yaklaşım ise güven, kalite ve rekabet gücü üretir.


Kaynakça (seçme)

  • Esin, A. (2024). Güvenilirlik ve Güvenilebilirlik. Mühendis ve Makina Güncel, Aralık 2024, Sayı 96. (Çevrim içi sürüm.)
  • Titiz, T. (2025). Geri dönüşümlü kâğıtlar, lif kısalması ve kullanım yerleri! (Blog yazısı.)

Yorum bırakın